Counting Pattern-free Set Partitions I: A Generalization of Stirling Numbers of the Second Kind

نویسنده

  • Martin Klazar
چکیده

A partition u of [k] = f1; 2; : : : ; kg is contained in another partition v of [l] if [l] has a k-subset on which v induces u. We are interested in counting partitions v not containing a given partition u or a given set of partitions R. This concept is related to that of forbidden permutations. A strengthening of Stanley{Wilf conjecture is proposed. We prove that the GF counting v is rational if (i) R is nite and the number of parts of v is xed or if (ii) u has only singleton parts and at most one doubleton part. In fact, (ii) is an application of (i). As another application of (i) we prove that for each k the GF counting partitions with k pairs of crossing parts belongs to Z(p1 4x). 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stirling number of the fourth kind and lucky partitions of a finite set

The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.

متن کامل

Combinatorially interpreting generalized Stirling numbers

The Stirling numbers of the second kind { n k } (counting the number of partitions of a set of size n into k non-empty classes) satisfy the relation

متن کامل

Stirling Numbers of the Second Kind and Primality

A Stirling number of the second kind is a combinatorial function which yields interesting number theoretic properties with regard to primality. The Stirling number of the second kind, S(n; k) = 1 k! k P i=0 ( 1) k i (k i), counts the number of partitions of an n-element set into k non-empty subsets. A Stirling prime (of the second kind) is a prime p such that p = S(n; k) for some integers n and...

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000